Finite element model of polar growth in pollen tubes.
نویسندگان
چکیده
Cellular protuberance formation in walled cells requires the local deformation of the wall and its polar expansion. In many cells, protuberance elongation proceeds by tip growth, a growth mechanism shared by pollen tubes, root hairs, and fungal hyphae. We established a biomechanical model of tip growth in walled cells using the finite element technique. We aimed to identify the requirements for spatial distribution of mechanical properties in the cell wall that would allow the generation of cellular shapes that agree with experimental observations. We based our structural model on the parameterized description of a tip-growing cell that allows the manipulation of cell size, shape, cell wall thickness, and local mechanical properties. The mechanical load was applied in the form of hydrostatic pressure. We used two validation methods to compare different simulations based on cellular shape and the displacement of surface markers. We compared the resulting optimal distribution of cell mechanical properties with the spatial distribution of biochemical cell wall components in pollen tubes and found remarkable agreement between the gradient in mechanical properties and the distribution of deesterified pectin. Use of the finite element method for the modeling of nonuniform growth events in walled cells opens future perspectives for its application to complex cellular morphogenesis in plants.
منابع مشابه
ROP Gtpase–Dependent Dynamics of Tip-Localized F-Actin Controls Tip Growth in Pollen Tubes
Tip-growing pollen tubes provide a useful model system to study polar growth. Although roles for tip-focused calcium gradient and tip-localized Rho-family GTPase in pollen tube growth is established, the existence and function of tip-localized F-actin have been controversial. Using the green fluorescent protein-tagged actin-binding domain of mouse talin, we found a dynamic form of tip-localized...
متن کاملMassively Parallelized Pollen Tube Guidance and Mechanical Measurements on a Lab-on-a-Chip Platform
Pollen tubes are used as a model in the study of plant morphogenesis, cellular differentiation, cell wall biochemistry, biomechanics, and intra- and intercellular signaling. For a "systems-understanding" of the bio-chemo-mechanics of tip-polarized growth in pollen tubes, the need for a versatile, experimental assay platform for quantitative data collection and analysis is critical. We introduce...
متن کاملSignaling tip growth in plants.
Tip growth is an extreme form of polar growth modulated by both intrinsic and extrinsic spatial cues. Pollen tubes and root hairs have been used as model systems to investigate tip growth signaling in higher plants. Recent studies have focused on tip-localized Ca2+ gradients and Rho GTPases in pollen tubes and a series of mutants affecting root hair tip growth. These molecular and genetic marke...
متن کاملAxial Crushing Analysis of Sandwich Thin-walled Tubes using Experimental and Finite Element Simulation
Application of impact energy absorption systems in different industries is of special significance. Thin-walled tubes, due to their lightness, high energy absorption capacity, long crushing length and the high ratio of energy absorption to weight, have found ever-increasing application as one of the most effective energy absorption systems. In this research, through carrying out experimental t...
متن کاملThe Rrop GTPase switch turns on polar growth in pollen.
Pollen-tube growth not only represents an essential stage of plant reproduction but also provides an attractive model for studying cell polarity and morphogenesis. For many years, pollen-tube growth has been known to require a tip-focused Ca2+ gradient and dynamic F actin, but the way that these are controlled remained a mystery until recently. Rop appears to be activated at growth sites by a t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 22 8 شماره
صفحات -
تاریخ انتشار 2010